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Recently Constantin and Rao gave an ingenious construction for a class of binary
cades capable of correcting a single asvmmetric crror. In this article we shall give a

complete analvsis of the size of these codes.

I. Introduction

Most known classes of binary error-correcting codes have
been designed for use on symmetric channels, i.e., channels for
which the error prodbabilities 1 = 0 and 0 = | are equal.
However, in certain applications (e.g.. LS! memory protection
(Ref. 1), optical communication (Ref. 6)). the observed errors
are highly asymmetric, and the appropriate channel model
may in fact be the Z-channel, in which the transition 0 = 1 is
impossible. Of course any code capable of correcting r errors
on a svemetric channel will also be capable of correcting ¢
Z-channe! errors: but at present there i8 no entirely satistac-
tory technique for dealing directly with asymmetric errors,
comparable say to the BCI-Goppa construction (Ref. §) for
symmetric errors, Recently, however, Constantin and Rao
(Ref, 1) gave an ingenious construction for a class of binary
codes capable of correcting a single asymmetric error. Since
our article is based on theirs, we begin with a description of
the C.-R. cades.

Let 1, denote the set of binary #-tuples, and let G be any
Abelian group of order - + 1. We suppose the nonzero
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clements of G are indexed gt g2V v oUD Foreach x =

vy ax, e b owe deline

n
¥(\): = 2 .\',.g(’) (nH

i=1

the addition in Eq. (1) taking place in . For each g € (7,
define

b,@: = {x€ Voo = ¢} ()

Constantin and Rao showed that each ol the subsets 17, (€) is
(qua code) capable of correcting one asvmumetric error. They
observed that since there are n + 1 sets 17, (€). and since each
of the 2" elements of 17, belongs to exactly one of them, then
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Since 2"/(n + D) is an wpper bound on the cardinality of a
single symmetric error-correcting code of tength n, the simple
bound of Eq. (3) already indicates that something interesting
is afoot,! and one naturally wishes to know more about the
numbers [V, (o). As a step in this direction, Constantin and
Rato showed that

VO I21F ()1 allg€G )

in effect Eq. (4) climinates the need to consider I, (g) for ¢ #
0. However, this is as far as Constantin and Rao went: they
were wnible to find an exact formula for |V, (0] except for
certain special groups, and they did not identify the group or
groups of order 11 + 1 yielding the largest value of [¥,,(0)]. We
ltve been able to fill in these gaps using finite Fourier analysis.
The details of our work appear in Sections 10 and U1, but here
we sketeh our main conclusions.

First, we have obtained an explicit formuta tor 117, (g)l in
general, The formula depends on the characters of G, and is
given (with the change in notation noted below) in Theorem
of Section H1, For g = 0, the case of primary interest, however,
the formula simplifics to

ey = (s V)0 -1 (s
(O = g 25 20 nn (5
h odd

the stmmation in Eq. (5) being.extended over all elements 1 €
¢ whose order o) is odd. We can also show (Corollary L,
Section TH) that the maximum of [, (@) is often not attained
uniquely:

ISV (0N with equality it and
only if o(g) is a power of 2,

In particular, it 1+ 1 is a power of 2, all CR codes of length n
have exactly 2M(n + 1) codewords, Since this is also the
nwmber of words in the Hamming single (svmumetric) error
correcting code of the same length, we conclude that the CR
construction is uninteresting for these lengths, However, it will
follow from our results that for all other lengths, the CR
construction produces codes that are strictly larger than the
best single svrnmetric error correcting code,

Yiadeed, @0 mois even, the menimum size for a single symmetric
crrarcarrecting vode i< € 2o+ D and BT e = Lanod ), it is <
Mg+ 3, a8ee Rell, 3, Clhapter 17 Henee (3 shows thit the best
CR ocode of tengthe 2 0, 1, 2mod 4) has more codewords than any

cade desipned to correct one symmetric ereor,

We will also show (Corollary 2, Section 1H1):

i n=2
:n ’": 3

TR

v (o) <

with equality il and only it s + 1 is a power of 3 and ¢ is un
clementary  Abelian J.group. And finally. we will show
(Corollary 3. Section [HY that among all Abelian groups of
order 21+ 11, (0) is maximized only by those groups whose
odd Sylow subgroups are elementary Abelian.

Change in notation:

In what follows, the order of ¢ will be denoted by i rather
than # + 1. Furthermore, in Section 11 we shall index the
clements of G, zere included. as G = g0, i) .o gtr=1)y
and redefine the mapping y: 17, = G by

n=-1

N = . ol
Hx): = Z.\ig

i=0
We shall then study the numbers

Sy = LINET, ty(x) = ¢t

The etfect of this is that to transtate our formulas for f(gd into
formulas for [I°, (¢)l. one must:

(1) Replace by (n + 1),
() Divide the f(gVs by 2.

Thus. for example, Corollary 1 in Section Ul reads IOV < 1/
¥ an/etn; ysing (1) and (2). we obtain [, (OM< 1/(n+ D X
20 V) oUN=1 4 claimed in Eq. (8).

Il. Some Fourler Analysis

Let GG be a tinite Abelian group of order 1. which we write
additively, Then ¢ is a direct st of cyelic subgroups, This
means that there exist elements ¥ . ya. 00009, in G olorders
My Hyooee oy with o0 =y ny -0 ony, csuch that every
clement in G has a unique expansion of the form ¢ = g9,
toeete Y, WithO g <n.i=l, 2o om. For brevity,
wewrite g = (g, .8, )

For cach 1€ (1. 2, -+, m}. et §; be a complex primitive
npeth root of unity, We define a mapping ¢ /0 of (7 X (7 into
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the complex numbers as follows. Let g = (gy. -
gooeeih, )

e L',,,)« h=

m eh
@ h): = H g, (6)

i=]

This mapping enjoys the following casily-checked propertics.

e = o N
(@M 1Y = (e h+ 1" (8)
2./ = Ga.hy = (g hY 9

3 e m =f’ it +0 (10)

cec t it h=0

Now let f(g) be any function mapping G into the complex
numbers, The Fourier lr.mxlnrnlj of flis defined as follows:

Fn:= Y th-grw (n

<G

Using the properties of Egs, (7). (8). and (10). it is casy to
verity the Fourier inversion formula:

0 =—"7 PIRURIA)) (12)

nes

This is well-known and can be found, at least implicitly, in any
goud algebra text, e Ret, 3. Chapter 1. We now derive an
alternate version of Eq. (12) which is not as well-known, but
which is often useful.

Let us eall two clements / and i’ of G equivalent. and write

I: ~ 00 I and B both generate the same evelic subgroup u!

r. From now on we shall assume that the Fourier Iransjnnn j
nj'f/m.\' the properiy that f'(h) = f'(h') whenever h ~ ',

WG = GUEU- - UG, s the decompusition of G into
~T equivalence classes. and i Ay s o0 L, are arbitrary
representatives of these classes, then Eq. (12) can be written as

(N

re) = %E Topy 3

i\ I:L(v.
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111, has order d;. then every element 1 € (7 hus the torm /i =
iy tor some integer | <F Koy with (/o)) = 1 Thus by Eqg, ()
the inner sum in Eq. (13) s

2 Ghoe) = Z hy, of (1)
1</, 18784,
(/.(ll)=l U.(Ii)’l

Now by Eq. (9). ¢, @) is o complex epqth root of unity for o
divisor ¢ ol’ dp and it follows from a theorem of Ramanujan
(see Ref, 2. Theorem 272) that the sum (Eq. (14)) is equal 1o
ANdPuleNe(e)). where ¢ is Euler's ¢-function and u is Mobius’
function. tence Eq. (13) becomes

ﬂ(( )

=— — 7
I Eo(mo( Fin)

Notice that it we define the product of g = (¢ .-, ¢, )
andli=(ly oo h) Yby

eh: = (_t"/ll.-'- ¢ It )

N S m

(RI}}}

then the integer ¢, appearing in Eq. (13) is just the order ol the
element ¢/, Thus it for ¢ € 7 we define

()

lel = =— ¢ = order () ("
éfe)
Eq. (15) can be written as
r
Sy = 35 ) e ] Fun) (18)

=1

Finally we note that [eh] = [¢h, | for all i € G oand than
IG1= $d). and so Eg. (18) can b; written in cuhu of the
following w ays:

r
2 ) il iy,

(o) = o~ ite ~ [}]
FETd] " ity ’I’. (I
i=1
. 1 -
= — : 0
FATS) " E leit] run (20
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{il. Main Results

Let ¢ = {g0@), (V) oo 2021} e y finite Abelian group
(we assume g(®) = 0), and let I’" denote the set of a-tuples of
O's and 1%, For x= (vg Xyorr X, ) E I, define the
mapping y: ¥, - G by :

n-1

Y(x): = E xg!" n

Our problent is to count the number of times cach clement in
G is covered in this mapping, i.e.. 1o find the numbers

7@ ={{x€ V" tH1x) = gl (22

We will solve this problem by using the results of Section 11,
Here is the result:

Theorem 1:

Foreachg €6,

f (g) = _:7 E (," g) 2"/0(/') (:3)
I odd

In particular,

H

. =L anjo(h)
oy =— 30 2

It odd

(In Lgs. (23) and (24). the symbol o (1) denotes the order of
the clement /1 € G, and the summation is extended over all
clements in & of odd order.)

Proof:

This will tollow from Eq. (12), once we compute f(h).
From Eq. (11),

Fun= Y s

EG

2 e i) (from Lq. (9)

LfEG

Z CGhoxg g4 wx

xE
"

lg(n-l))

(from Lq. (22

n-\

= n (1 +4-1 ¢

i=0

(from B (8)

‘One can easily see from Eq. (6) that for i fined value of 4,

with o) = . the mapping g ~ &h, @) is o homomorphism of
G onto the complex d-th roots of unity, Thus it A denotes the
product Il‘l';o' a+¢h ¢ being an appropriate prinntive
complex ¢-th root of unity, @Y= K™, But the d complen

numbers {1 4§47 are roots of thc equation ¢z = 1M-1=0.
and so their pmdud is 1 - (- Y. henee & = 200 d is o,
K =0itdis even. Hence

f(h) =

it o is even

= 2000 G LY is odd

and theorem 1 follows,

Corollary {

AR TA)] =-;'-'- Z noun

I odd

with equality it and only it o{g) is a power of 2.
Proof:
From Theorem 1.,

S@ =UEIS T (h Q12 e

hodd

But {, @), being a complex root of unity, has absolute value 1,
and so

,r'(g)<-’17 Do et = g0y (B
I odd

This inequality will be equality. it and only if ¢, ) = 1 tor all
elements /1 of odd order. Now from Eq.(9) (b g) will in

. general have an order which divides g.c.d. (0UnN o). Henee it

o(g) is a power of 2, then (1. gd= 1 for all it of odd order. and
equality holds in Eqs. (26) and (27). Convcrs‘clv ii’u(c) is not a
power of 2. then in the expansion g= gy, +- -+ ¢ 7, .

there will exist an index 7 such that g ,¢ 0 .md o(g;y, ) isnota
power of 2. lfu(’/,) =1 = 29 with @ odd. let d = pod. (2 g,

n,). Then  #0 (mod 1) since ¢ ,7,. s order is not a power of 2
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IV the integer it is chosen so that 0 €/, <= 1 and (2%h, =
d (mod n), it tollows that /i = 2"/1,'71 has odd order, and that

IUK h
i

Uogh=¢ "Flapd QED.

Corollary 2:
SOV 1n (2 + (- 1)2'13), with equality if and only if »
is a power of 3, and G is an elementary Abelian 3-group.
Proof:

From Corollary 1,

. =_l_ = aujo(h)
fo) = 352

I odd

M4 Z 2n/n(h))

hodd
h+0

n

I 1= 0. but o(fr} is odd, then o(i1) = 3. Henee 27170 g /3,
and so

£O) <L @4 ge- 13207 (28)

Equality clearly holds in Eq. (29) if and only if every element
in G (except 0) has order 3, i.e., iff G is an elementary Abelian
J.group. QED.

To state our final corollary, we need to introduce some

number-theoretic notation. Let the prime-power decomposi-
tion of 1 he

e (n)
n=[Tp"

pin

QN

and let P be the set'of odd primes dividing 2. 1€ 7 is a subset
of £\ we define

aon: = 1 (57" -1) (30)
pEn

In]: = n p RID)
peER
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Corollary 3:

10 G is a group of order 1, then

. 1 .
1(0)<'—' 2 a"(n)-'”"'

n;l'l(u)

with equality it for all odd p. the Sylow p-subgroups ot ¢ are
elementary Abelian,

Proof:

Let

G = Z G,

plin

be the decomposition of G as the direct sum of its Sylow
subgroups. If 7 is a subset of £ (#) let §_ be the subset of ¢
consisting of these elements whose orders involve exactly the
primes in 7. Then clearly S, 1= a (). and every elementin §
has order at feast [r]. The inequality of Eq. (32) tollows.
Furthermore, equality holds in Lq. (32) i1 cach element in
cach S" has order exactly [7]. and this will happen it ¢ach
odd Gp is elementary. QL.

We conclude with one illustration of how Theorem 1 can be
used to compute the values f1g), for all g € ;. Suppose, then,
that G =Z_oZ  is a direct sum of a cyclic p-group and a cyelic
q-group, p and q being odd primes, We represent the elements
of G as pairs (v, v). 0 S v < p.0 <y <gq. There are just four
equivalence classes of elements in ¢, and we can choose as
representatives ot these classes (0. 0). (0. 1). (1. 0). (1. 1). The
following table will prove useful:

i h, d, o) Fuy

0 (0.0) 1 vw‘—l T Z’T_
1.1 q q- 1 2

2 (1.0) P p-1 hil
3. »q - N@-n 2

Now what Eq. (19) says, in essence, is th;ulhc value fUL) is
the jth component of the vector £ = V/n #H {, where /is the
r X r matrix defined by

II'.I.: = o) “’:}'/'



a ~
and f is the column vector whose /-th component is j(h,). In S, = N (2P9 4 (q- NP - 2. (q- N2
the present case, clearly < M

{7 = (2P, 2P 29 2)

flry= o (2re - wo 2 3

and from the above table we compute

For example with p“‘ 3.q =5 we get}'(ho) = 2102, /) =

! (-1 (-1 r-D@-" 2188, f(llz)* 2084, f(hy)= 2182, This means that the CR
codes of length 14 defined by this group have
1 -1 w-Nn -(p-1)
=1y ) -(q- it
(@-1) (@-1 1096ite ~ I,
1 -1 -1 +1 1094ifg ~h,

Ilence

[ o277 + (0= D +(p= 12T+ = 1) (- D2}

]-(h')g ;:7’. {2!"1 -

6.

Wia@®l = 1002irg ~h,

1091 itg~h,

The best possible single symmetric error-correcting code of
X a(p-1)27- (- 12} tength 14 has onty 1024 words (see Ref. 4, Appendix A)
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